Cosmological constraints on neutrinos with Planck data

Marta Spinelli
(on behalf of the Planck Collaboration)

Laboratoire de l'Accélérateur Linéaire

Neutrino 2014

Motivations

Cette obscure clarté qui tombe des étoiles

(Anselm Kiefer, 1945)

- Neutrinos: weak interaction and gravity
 ⇒ influence on a variety of phenomena from early Universe to late time epochs
- Cosmic Microwave Background contains information about the whole story of the Universe
 - \Rightarrow we can constrain neutrino physics: masses $(\sum m_{\nu})$, density of light relics (N_{eff})
- Planck: full sky, high quality data on the CMB temperature anisotropies

- 1 The CMB sky with Planck
- 2 Effect of $N_{\rm eff}$ and $\sum m_{\nu}$ on the CMB
- 3 Planck results
 - Results on N_{eff}
 - Limits on $\sum m_{\nu}$
 - Some other extensions
- 4 Conclusions

The Planck satellite

Mission at Lagrange point L2 (2009-2013) Full scan of the sky every 6 months

- (!) large and redundant sky coverage
- (!) low detector noise and high angular resolution

- 2 instruments: LFI/HFI
- 75 detectors: 22 radiometers, 52 bolometers
- 9 frequency channels

Boston, 6th June 2014

Planck frequency coverage

From data to parameters estimation

 $(\vec{\Omega}: cosmological \ parameters, \ \psi: \ nuisances)[\sim 40 \ params]$

The great success of ΛCDM

The minimal standard model

- flat Universe
- expansion rate H_0 , energy density $\Omega_b h^2$, $\Omega_c h^2$
- matter primordial perturbation (scalar, adiabatic) $P_s(k) = \frac{A_s(\frac{k}{k_s})^{n_s-1}}{n_s}$
- reionization: τ (or z_{re})
- 3 active massive neutrinos $\sum m_{\nu} = 0.06 \text{ eV}$ (from oscillation experiments with $m_{light} \sim 0$ and NH)

 ΛCDM is enough to perfectly fit the data

The great success of ΛCDM

The minimal standard model

- flat Universe
- expansion rate H_0 , energy density $\Omega_b h^2$, $\Omega_c h^2$
- matter primordial perturbation (scalar, adiabatic) $P_s(k) = \frac{A_s(\frac{k}{k_s})^{n_s-1}}{n_s}$
- reionization: τ (or z_{re})
- 3 active massive neutrinos $\sum m_{\nu} = 0.06 \text{ eV}$ (from oscillation experiments with $m_{light} \sim 0$ and NH)

 ΛCDM is enough to perfectly fit the data

Anyway..

test of well motivated extensions:

$$+N_{\text{eff}},+\sum m_{\nu},+...$$

- 1 The CMB sky with Planck
- 2 Effect of $N_{\rm eff}$ and $\sum m_{\nu}$ on the CMB
- 3 Planck results
 - Results on N_{eff}
 - Limits on $\sum m_{\nu}$
 - Some other extensions
- 4 Conclusions

1. N_{eff}

 $N_{\rm eff}$ (\sim massless) degrees of freedom beyond photons relativistic during radiation domination (account for any light relics, GW, etc.)

- $\rho_{
 u} \propto N_{\rm eff} T_{CMB}^4$
- standard neutrinos $N_{\text{eff}} = 3.046$
- previous hints for $N_{\text{eff}} > 3$ from SPT, ACT...

1. N_{eff}

 N_{eff} (\sim massless) degrees of freedom beyond photons relativistic during radiation domination (account for any light relics, GW, etc.)

- $\rho_{\nu} \propto N_{\rm eff} T_{CMB}^4$
- standard neutrinos $N_{\text{eff}} = 3.046$
- previous hints for $N_{\text{eff}} > 3$ from SPT, ACT...

if $N_{eff} \uparrow \uparrow$, the age of the Universe at recombination \downarrow

⇒ effect on the damping tail

2. $\sum m_{\nu}$

CMB only (sligthly) sensitive to $M_{\nu} = \sum m_{\nu}$ (degenerate)

a. effect around first acoustic peak

WMAP: $\sum m_{\nu} < 1.3 \text{ eV}$ (95%*CL*)

2. $\sum m_{\nu}$

CMB only (sligthly) sensitive to $M_{\nu} = \sum m_{\nu}$ (degenerate)

a. effect around first acoustic peak

WMAP: $\sum m_{\nu} < 1.3 \text{ eV}$ (95%*CL*)

- **b.** Neutrinos free-streaming suppress small scale clustering
 - → effect on CMB lensing potential reconstructed from non gaussian tri-spectrum

Planck 2013 results. XVII.

- 1 The CMB sky with Planck
- 2 Effect of $N_{\rm eff}$ and $\sum m_{\nu}$ on the CMB
- 3 Planck results
 - Results on N_{eff}
 - Limits on $\sum m_{\nu}$
 - Some other extensions
- 4 Conclusions

Results on $N_{\rm eff}$

- $N_{\text{eff}} = 3.36 \pm 0.34$ (Planck+WP+High ℓ)
- tighter constraint adding BAO data $N_{\rm eff} = 3.30 \pm 0.27$
- ACT/SPT used a high H₀ value in tension with Planck data

[Planck 2013 results.XVI.]

Compatible with 3 species

Results on $\sum m_{\nu}$

- $\sum m_{\nu} < 0.66 \text{ eV}$ (95%CL; Planck+WP+High- ℓ)
- +lensing $\sum m_{\nu} < 0.85 \text{ eV}$
- removing lensing information we go back to ~WMAP

 $+BAO: \sum m_{\nu} < 0.23 \text{ eV}$

-1.0

-0.5

Results on $\sum m_{\nu} \ (profile - \mathcal{L})$

- frequentist analysis: Planck alone gives an artificially low results
- +lensing $\sum m_{\nu} < 0.85 \text{ eV}$
- we use Feldman-Cousins prescription
- +BAO: $\sum m_{\nu} < 0.26 \text{ eV}$

[Planck intermediate results.XVI.]

Planck+WP+Highℓ + lensing + BAO

0.0 Σ m_v [eV] 0.5

1.0

Simultaneous constraints on $\sum m_{\nu}$ and $N_{\rm eff}$

[Planck 2013 results.XVI.]

- assumption: 3 active neutrinos coexisting with extra massless species
- $\sum m_{\nu}$ and $N_{\rm eff}$ different impact on CMB: no significant correlation
- results adding BAO:

$$N_{\text{eff}} = 3.32 \pm 0.27 \ (68\%CL)$$

 $\sum m_{\nu} < 0.28 \text{ eV } (95\%CL)$

Any evidence of sterile neutrinos?

Model: extra massive neutrino thermally distributed with arbitrary temperature T_s ($\Delta N_{\text{eff}} = (T_s/T_{\nu})^4$)

$$m_{\nu,\text{sterile}}^{\text{eff}} = (\Delta N_{\text{eff}})^{3/4} m_{\text{sterile}}^{\text{thermal}}$$

- for low $N_{\rm eff}$ unconstrained within $\Omega_c h^2$
- for $m_{\rm sterile}^{\rm thermal} < 10 \ {\rm eV}$ $N_{\rm eff} < 3.91$ $m_{\nu, {\rm sterile}}^{\rm eff} < 0.59 \ {\rm eV}$ only marginally compatible with oscillation anomalies

(same results valid for Dodelson-Widrow scenario)

Conclusions

- Cosmology is a rich laboratory to test neutrinos properties
- Using high quality CMB data from Planck we obtained (model dependent) constraints on the sum of the masses $(\sum m_{\nu})$ or on the presence of extra relativistic degree of freedom (N_{eff})
- N_{eff} is compatible with 3 families
- our best limit on the sum of the masses, in combination with BAO measurements is $\sum m_{\nu} < 0.23$ eV
- no clear indications for sterile neutrinos
- Full Mission and Polarization data: October 2014

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Backup

Constraints on N_{eff} from BBN

- $Y_p(\omega_b, N_{\text{eff}})$ from PArthENoPE (Pisanti et al 2008)
- with N_{eff} free:

$$\begin{split} & N_{\rm eff} = 3.41 \pm 0.30 \; Y_P ({\rm Aver \; et \; al.}) \\ & N_{\rm eff} = 3.43 \pm 0.34 \; Y_{DP} ({\rm Iocco \; et \; al.}) \\ & N_{\rm eff} = 3.41 \pm 0.30 \; Y_{DP} ({\rm Pettini\&Cooke}) \end{split}$$

• if both N_{eff} and Y_P free still compatible with 3 species but larger errors (degenerate effects on CMB)

The BAO information improves constraints

Late distance measurements breaks degeneracies:

- M_{ν} neutrino mass affects D_A to the last scattering (constrained using first acoustic peak) \rightarrow BAO breaks geometrical degeneracy
- N_{eff} At θ_s and z_{EQ} fixed, if $N_{eff} \uparrow \uparrow$, expansion rate $\uparrow \uparrow$ (at low z also) Effect similar on r_s and $D_V \rightarrow$ not as powerfull as for M_{ν}

BAO data:

- 6dF: $z_{\text{eff}} = 0.1$ (Beutler et al. 2011)
- SDSS(R): $z_{\text{eff}} = 0.32$ (Padmanahhan et al. 2012)
- BOSS: $z_{\text{eff}} = 0.57$ (Anderson et al. 2013)

Boston, 6th June 2014

Subtlety of lensing: A_L

$$\vec{\Omega} \rightarrow \mathcal{C}_{\ell}^{TT} \rightarrow \hat{\mathcal{C}}_{\ell}^{TT}$$

$$\nearrow$$

$$\mathcal{C}_{\ell}^{\phi\phi} \rightarrow (A_{L})\mathcal{C}_{\ell}^{\phi\phi}$$

 A_L scales the explicit $C_\ell^{\phi\phi}$ expect $A_L = 1 \rightarrow 120$

→ slightly more lensing in the *Planck* temperature power spectrum than expected!

More on $\sum m_{\nu}$

preference for $A_L > 1$ futher investigated

- removal of low- ℓ (τ prior replaces WP)
- removal of High (limit degrades)
- mild preference for higher masses from lensing 4points respect to 2points info

SZ clusters constraints on $\sum m_{\nu}$

tension CMB vs Planck SZ clusters

(residual systematics?, statistical fluctuation?,..)

- Planck+WP+Highℓ
- +SZ (1 b = 0.8)
- +SZ (1-b in [0.7,1])
- +SZ+BAO (1-b in [0.7,1])

Boston, 6th June 2014

Results on $N_{\rm eff}$

- $N_{\text{eff}} = 3.36 \pm 0.34$ (Planck+WP+High ℓ)
- tighter constraint adding BAO data $N_{\text{eff}} = 3.30 \pm 0.27$
- tension H_0 vs CMB+BAO relieved at the cost of extra neutrino physics:

$$N_{
m eff} = 3.62 \pm 0.25$$

no strong preference

Planck 2013 results. XVI.

Compatible with 3 species

Planck TT Likelihood

Low ℓ ($2 \le \ell \le 40$)

- from low resolution maps (30GHz-353GHz)
- 91% of the sky
- accounts for errors in foreground cleaning

$\text{High}\ell\ (\ell \geq 50)$

- uses 100GHz, 143GHz and 217GHz maps
- masking strategy to limit contamination from foregrounds

• likelihood approximated as gaussian

Bayesian approach

Inference on the true parameters θ using posterior probability: given the data, the degree of belief in an assumed model

$$P(\boldsymbol{\theta}|Planck) \propto \mathcal{L}_{Planck}(\mathcal{C}_l, \boldsymbol{\psi})\pi(\boldsymbol{\theta})$$

priors $\pi(\theta)$: encode previous knowledge

Monte Carlo Markov Chain:

- method to sample from this high dimensional probability distribution
- ergodic Markov chain $\{X_t\}$ with desired stationary distribution
- marginalization: 1-D histograms from the chain ⇒ posterior on each parameter (mean and CL)

from Silvia Galli

Planck 2013 statistical methodology comparison on ΛCDM

Parameter	CMB		CMB+BAO	
	MCMC	Profile-likelihood	MCMC	Profile-likelihood
H_0	67.3 ± 1.2	67.2 ± 1.2	67.8 ± 0.8	67.7 ± 0.8
100ω _b	2.207 ± 0.027	2.208 ± 0.027	2.214 ± 0.024	2.215 ± 0.024
ω _c	0.1198 ± 0.0026	0.1201 ± 0.0026	0.1187 ± 0.0017	0.1190 ± 0.0017
n _s	0.9585 ± 0.0070	0.9575 ± 0.0071	0.9608 ± 0.0054	0.9598 ± 0.0055
$\ln(10^{10}A_{\rm s})$	3.090 ± 0.025	3.087 ± 0.025	3.091 ± 0.025	3.088 ± 0.025
Z _{re}	11.2 ± 1.1	11.0 ± 1.1	11.2 ± 1.1	11.2 ± 1.1

Perfect agreement

 $Planck\ intermediate\ results.\ XVI.\ Profile\ likelihoods\ for\ cosmological\ parameters$

arXiv:1311.1657

